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Abstract
A geometric approach to time-dependent optimal control problems is proposed.
This formulation is based on the Skinner and Rusk formalism for Lagrangian
and Hamiltonian systems. The corresponding unified formalism developed for
optimal control systems allows us to formulate geometrically the necessary
conditions given by a weak form of Pontryagin’s maximum principle, provided
that the differentiability with respect to controls is assumed and the space of
controls is open. Furthermore, our method is also valid for implicit optimal
control systems and, in particular, for the so-called descriptor systems (optimal
control problems including both differential and algebraic equations).

PACS numbers: 45.50.−j, 02.30.Hq, 45.20.Jj
Mathematics Subject Classification: 70G45, 49J15, 34A26, 49K15, 70H03,
70H05

1. Introduction

In 1983 Skinner and Rusk introduced a representation of the dynamics of an autonomous
mechanical system which combines the Lagrangian and Hamiltonian features [24]. Briefly,
in this formulation, one starts with a differentiable manifold Q as the configuration space,
and the Whitney sum T Q ⊕ T ∗Q as the evolution space (with canonical projections
ρ1: T Q ⊕ T ∗Q −→ T Q and ρ2: T Q ⊕ T ∗Q −→ T ∗Q). Define on T Q ⊕ T ∗Q the
presymplectic 2-form � = ρ∗

2ωQ, where ωQ is the canonical symplectic form on T ∗Q, and
observe that the rank of this presymplectic form is everywhere equal to 2n. If the dynamical
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system under consideration admits a Lagrangian description, with Lagrangian L ∈ C∞(T Q),
then we obtain a (presymplectic)-Hamiltonian representation on T Q ⊕ T ∗Q given by the
presymplectic 2-form � and the Hamiltonian function H = 〈ρ1, ρ2〉 − ρ∗

1L, where 〈· , ·〉
denotes the natural pairing between vectors and covectors on Q. In this Hamiltonian system,
the dynamics is given by vector fields X, which are solutions to the Hamiltonian equation
i(X)� = dH . If L is regular, then there exists a unique vector field X solution to the previous
equation, which is tangent to the graph of the Legendre map FL: T Q −→ T ∗Q. In the
singular case, it is necessary to develop a constraint algorithm in order to find a submanifold
(if it exists) where there exists a well-defined dynamical vector field.

The idea of this formulation was to obtain a common framework for both regular and
singular dynamics, obtaining simultaneously the Hamiltonian and Lagrangian formulations of
the dynamics. Over the years, however, Skinner and Rusk’s framework was extended in many
directions. For instance, Cantrijn et al [7] extended this formalism for explicit time-dependent
systems using a jet bundle language; Cortés et al [6] use the Skinner and Rusk formalism to
consider vakonomic mechanics and the comparison between the solutions of vakonomic and
nonholonomic mechanics. In [9, 13, 21], the authors developed the Skinner–Rusk model for
classical field theories.

Furthermore, the Skinner–Rusk formalism seems to be a natural geometric setting
for Pontryagin’s maximum principle. In this paper, whose roots are in the developments
made in [7, 9, 13], we adapt the Skinner–Rusk formalism to study time-dependent optimal
control problems. In this way we obtain a geometric version of the maximum principle
that can be applied to a wide range of control systems. For instance, these techniques
enable to tackle geometrically implicit optimal control systems, that is, those where the
control equations are implicit. In fact, systems of differential-algebraic equations appear
frequently in control theory. Usually, in the literature, it is assumed that it is possible
to rewrite the problem as an explicit system of differential equations, perhaps using the
algebraic conditions to eliminate some variables, as in the case of holonomic constraints.
However, in general, a control system is described as a system of equations of the type
F(t, x, ẋ, u) = 0, where the x’s denote the state variables and the u’s the control variables, and
there are some interesting cases where the system is not described by the traditional equations
ẋ = G(t, x, u).

The main results of this work can be found in sections 3 and 4, where we give a general
method to deal with explicit and implicit systems. As examples, we consider the case of
optimal control of Lagrangian mechanical systems (see [1–4]) and also optimal control for
descriptor systems [17, 18]. Both examples have significant engineering applications.

The organization of the paper is as follows: section 2 is devoted to giving an alternative
approach of the Skinner–Rusk formalism for time-dependent mechanical systems. In section 3
we develop the unified formalism for explicit time-dependent optimal control problems giving
a geometric Pontryagin’s maximum principle in a weak form, and in section 4 we do the same
for implicit optimal control systems. Section 5 is devoted to examples and applications: first
we study the optimal control of Lagrangian systems with controls; that is, systems defined
by a Lagrangian and external forces depending on controls [1–4]. These are considered as
implicit systems defined by the Euler–Lagrange equations. Second, we analyze a quadratic
optimal control problem for a descriptor system [17]. We point out the importance of these
kinds of systems in engineering problems [18] and references therein. Finally, we include
an appendix where geometric features about Tulczyjew’s operators, contact systems and the
Euler–Lagrange equations for forced systems are explained.

All the manifolds are real, second countable and C∞. The maps are assumed to be C∞.
Sum over repeated indices is understood.
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2. Skinner–Rusk unified formalism for non-autonomous systems

This formalism is a particular case of the unified formalism for field theories developed in [9]
and also in [13]. See [7] for an alternative but equivalent approach, and [11] for an extension of
this formalism to other kinds of more general time-dependent singular differential equations.

In the jet bundle description of non-autonomous dynamical systems, the configuration
bundle is π : E → R, where E is a (n + 1)-dimensional differentiable manifold endowed with
local coordinates (t, qi), and R has as a global coordinate t. The jet bundle of local sections of
π, J 1π , is the velocity phase space of the system, with natural coordinates (t, qi, vi), adapted
to the bundle π : E → R, and natural projections

π1: J 1π → E, π̄1: J 1π → R.

A Lagrangian density L ∈ �1(J 1π) is a π̄1-semibasic 1-form on J 1π , and it is usually
written as L = L dt , where L ∈ C∞(J 1π) is the Lagrangian function determined by L.
Throughout this paper we denote by dt the volume form in R, and its pull-backs to all the
manifolds.

The canonical structure of the bundle J 1π allows us to define the Poincaré–Cartan forms
associated with the Lagrangian density L, and then the Euler–Lagrange equations are written
intrinsically (see [10, 23]).

Furthermore, we have the extended momentum phase space T ∗E, and the restricted
momentum phase space which is defined by J 1π∗ = T ∗E/π∗T ∗

R. Local coordinates in
these manifolds are (t, qi, p, pi) and (t, qi, pi), respectively. Then, the following natural
projections are

τ 1: J 1π∗ → E, τ̄ 1 = π ◦ τ 1: J 1π∗ → R, µ: T ∗E → J 1π∗, p: T ∗E → R.

Let � ∈ �1(T ∗E) and � = −d� ∈ �2(T ∗E) be the canonical forms of T ∗E whose local
expressions are

� = pi dqi + p dt, � = dqi ∧ dpi + dt ∧ dp.

The Hamilton equations can be written intrinsically from these canonical structures (see, for
instance, [10, 12, 16, 20, 22]).

Now we introduce the geometric framework for the unified Skinner–Rusk formalism for
non-autonomous systems. We define the extended jet-momentum bundle W and the restricted
jet-momentum bundle Wr

W = J 1π ×E T ∗E, Wr = J 1π ×E J 1π∗

with natural coordinates (t, qi, vi, p, pi) and (t, qi, vi, pi), respectively. We have the natural
submersions

ρ1: W → J 1π, ρ2: W → T ∗E, ρE : W → E, ρR: W → R

ρr
1: Wr → J 1π, ρr

2: Wr → J 1π∗, ρr
E : Wr → E, ρr

R
: Wr → R.

(1)

Note that π1 ◦ ρ1 = τ 1 ◦ µ ◦ ρ2 = ρE . In addition, for ȳ ∈ J 1π , and p ∈ T ∗E, there is also
the natural projection

µW : W → Wr

(ȳ, p) 
→ (ȳ, [p])

where [p] = µ(p) ∈ J 1π∗. The bundle W is endowed with the following canonical structures.
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Definition 1.

(1) The coupling 1-form in W is the ρR-semibasic 1-form Ĉ ∈ �1(W) defined as follows: for
every w = (j 1φ(t), α) ∈ W (that is, α ∈ T ∗

ρE(w)E) and V ∈ TwW , then

Ĉ(V ) = α(Tw(φ ◦ ρR)V ).

(2) The canonical 1-form �W ∈ �1(W) is the ρE-semibasic form defined by �W = ρ∗
2�.

The canonical 2-form is �W = −d�W = ρ∗
2� ∈ �2(W).

Being Ĉ a ρR-semibasic form, there is Ĉ ∈ C∞(W) such that Ĉ = Ĉ dt . Note also that
�W is degenerate, its kernel being the ρ2-vertical vectors; then (W,�W) is a presymplectic
manifold.

The local expressions for �W ,�W , and Ĉ are

�W = pi dqi + p dt, �W = −dpi ∧ dqi − dp ∧ dt, Ĉ = (p + piv
i) dt.

Given a Lagrangian density L ∈ �1(J 1π), we denote L̂ = ρ∗
1L ∈ �1(W), and we can

write L̂ = L̂ dt , with L̂ = ρ∗
1L ∈ C∞(W). We define a Hamiltonian submanifold

W0 = {w ∈ W | L̂(w) = Ĉ(w)}.
So, W0 is the submanifold of W defined by the regular constraint function Ĉ−L̂ = 0. Observe
that this function is globally defined in W , using the dynamical data and the geometry. In
local coordinates this constraint function is

p + piv
i − L̂(t, qj , vj ) = 0 (2)

and its meaning will be clear when we apply this formalism to optimal control problems
(see section 3.2). The natural imbedding is 0: W0 ↪→ W , and we have the projections
(submersions), see diagram (3):

ρ0
1 : W0 → J 1π, ρ0

2 : W0 → T ∗E, ρ0
E : W0 → E, ρ0

R
: W0 → R

which are the restrictions to W0 of the projections (1), and

ρ̂0
2 = µ ◦ ρ0

2 : W0 → J 1π∗.

Local coordinates in W0 are (t, qi, vi, pi), and we have that

ρ0
1(t, qi, vi, pi) = (t, qi, vi), 0(t, q

i, vi, pi) = (t, qi, vi, L − piv
i, pi)

ρ̂0
2(t, qi, vi, pi) = (t, qi, pi), ρ0

2(t, qi, vi, pi) = (t, qi, L − piv
i, pi).

Proposition 1. W0 is a 1-codimensional µW -transverse submanifold of W , which is
diffeomorphic to Wr .

Proof. For every (ȳ, p) ∈ W0, we have L(ȳ) ≡ L̂(ȳ, p) = Ĉ(ȳ, p), and

(µW ◦ 0)(ȳ, p) = µW(ȳ, p) = (ȳ, µ(p)).

First, µW ◦ 0 is injective: let (ȳ1, p1), (ȳ2, p2) ∈ W0, then we have

(µW ◦ 0)(ȳ1, p1) = (µW ◦ 0)(ȳ2, p2) ⇒ (ȳ1, µ(p1)) = (ȳ2, µ(p2))

⇒ ȳ1 = ȳ2, µ(p1) = µ(p2)

hence, L(ȳ1) = L(ȳ2) = Ĉ(ȳ1, p1) = Ĉ(ȳ2, p2). In a local chart, the third equality gives

p(p1) + pi(p1)v
i(ȳ1) = p(p2) + pi(p2)v

i(ȳ2)

but µ(p1) = µ(p2) implies that

pi(p1) = pi([p1]) = pi([p2]) = pi(p2)

therefore p(p1) = p(p2) and hence p1 = p2.
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Second, µW ◦ 0 is onto, then, if (ȳ, [p]) ∈ Wr , there exists (ȳ, q) ∈ 0(W0) such that
[q] = [p]. In fact, it suffices to take [q] such that, in a local chart of J 1π ×E T ∗E = W

pi(q) = pi([p]), p(q) = L(ȳ) − pi([p])vi(ȳ).

Finally, since W0 is defined by the constraint function Ĉ − L̂ and, as ker µW∗ = {
∂
∂p

}
locally and ∂

∂p
(Ĉ − L̂) = 1, then W0 is µW -transversal. �

As a consequence of this result, the submanifold W0 induces a section of the projection
µW ,

ĥ: Wr → W.

Locally, ĥ is specified by giving the local Hamiltonian function Ĥ = −L̂ + piv
i ; that is,

ĥ(t, qi, vi, pi) = (t, qi, vi,−Ĥ , pi). In this sense, ĥ is said to be a Hamiltonian section
of µW .

So we have the following diagram:

J1π

W0

ρ0
1

0

ρ0
2

ρ̂0
2

W

ρ1

ρ2

µW Wr

ρr1

ρ2 ◦ ĥ

ρr2
T ∗E

µ

J1π∗
(3)

3. Optimal control theory

3.1. Classical formulation of Pontryagin’s maximum principle

In this section, we consider non-autonomous optimal control systems. This class of systems
is determined by the state equations, which is a set of differential equations

q̇i = F i (t, qj (t), ua(t)), 1 � i � n, (4)

where t is the time, qj denote the state variables and ua, 1 � a � m, the control inputs of the
system that must be determined. Prescribing initial conditions of the state variables and fixing
control inputs we know completely the trajectory of the state variables qj (t) (in the following,
all the functions are assumed to be at least C2). The objective is the following statement.

Statement 1 (non-autonomous optimal control problem). Find a C2-piecewise smooth curve
γ (t) = (t, qj (t), ua(t)) and T ∈ R

+ satisfying the conditions for the state variables at time
0 and T, the control equations (4); and minimizing the functional J (γ ) = ∫ T

0 L(t, qj (t),

ua(t)) dt.

The solutions to this problem are called optimal trajectories.
The necessary conditions to obtain the solutions to such a problem are provided by

Pontryagin’s maximum principle for non-autonomous systems. In this case, considering the
time as another state variable, we have the following theorem [19].
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Theorem 1 (Pontryagin’s maximum principle). If a curve γ : [0, T ] → R × R
n × R

m, γ (t) =
(t, qi(t), ua(t)), with γ (0) and γ (T ) fixed, is an optimal trajectory, then there exist functions
p(t), pi(t), 1 � i � n, verifying

dqi

dt
= ∂H

∂pi

(t, qi(t), ua(t), p(t), pi(t)) (5)

dpi

dt
= − ∂H

∂qi
(t, qi(t), ua(t), p(t), pi(t)) (6)

H(t, qi(t), ua(t), p(t), pi(t)) = max
ua

H(t, qi(t), ua, p(t), pi(t)), t ∈ [0, T ] (7)

and, moreover,

H(t, qi(t), ua(t), p(t), pi(t)) = 0, t ∈ [0, T ], (8)

where

H(t, qi, ua, p, pi) = p + pjF j (t, qi, ua) + p0L(t, qi, ua)

and p0 ∈ {−1, 0}.
When we are looking for extremal trajectories, which are those satisfying the necessary

conditions of theorem 1, condition (7) is usually replaced by the weaker condition

ϕa ≡ ∂H
∂ua

= 0, 1 � a � m. (9)

In this weaker form, the maximum principle only applies to optimal trajectories with optimal
controls interior to the control set.

Remark. An extremal trajectory is called normal if p0 = −1 and abnormal if p0 = 0. For the
sake of simplicity, we only consider normal extremal trajectories, but the necessary conditions
for abnormal extremals can also be characterized geometrically using the formalism given in
section 2. Hence, from now on we will take p0 = −1.

An optimal control problem is said to be regular if the following matrix has maximal rank(
∂ϕa

∂ub

)
=

(
∂2H

∂ua∂ub

)
. (10)

In the following sections, we develop a geometric formulation of this maximum principle
in its weak form, similar to the Skinner–Rusk approach to non-autonomous mechanics as was
explained in section 2 and references therein.

3.2. A unified geometric framework for optimal control theory

In a global description, we have a fiber bundle structure πC : C −→ E and π : E → R, where
E is equipped with natural coordinates (t, qi) and C is the bundle of controls, with coordinates
(t, qi, ua).

The state equations can be geometrically described as a smooth map F : C −→ J 1π such
that it makes commutative the following diagram

C
F

πC

π̄C

J1π
π1

π̄1E

π
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which means that F is a jet field along πC and also along π̄C . Locally we have F(t, qi, ua) =
(t, qi,F i (t, qi, ua)).

Geometrically, we will assume that an optimal control system is determined by the pair
(L,F), where L ∈ �1(C) is a π̄C-semibasic 1-form, then L = L dt , with L ∈ C∞(C)

representing the cost function; and F is the jet field introduced in the previous section.
In this framework, theorem 1 in its weak form can be restated as the following theorem.

Theorem 2. If a curve γ : I → C, with γ (0) and γ (T ) fixed, is an optimal trajectory,
then there exists a curve �: I → C ×E T ∗E such that, in a natural coordinate system,
�(t) = (γ (t), p(t), pi(t)) verifies (5), (6), (8) and (9), where H = p + pjF j + p0L and
p0 ∈ {−1, 0}.

Now, we develop the geometric model of optimal control theory according to the Skinner–
Rusk formulation.

The graph of the mapping F, Graph F , is a subset of C ×E J 1π and allows us to define
the extended and the restricted control-jet-momentum bundles, respectively:

WF = Graph F ×E T ∗E, WF
r = Graph F ×E J 1π∗

which are submanifolds of C×EW = C×E J 1π×E T ∗E and C×EWr = C×E J 1π×E J 1π∗,
respectively.

In WF and WF
r we have natural coordinates (t, qi, ua, p, pi) and (t, qi, ua, pi),

respectively. We have the immersions (see diagram (11)):

iF : WF ↪→ C ×E W, iF (t, qi, ua, p, pi) = (t, qi, ua,F i (t, qj , ub, ), p, pi)

iFr : WF
r ↪→ C ×E Wr , iFr (t, qi, ua, pi) = (t, qi, ua,F i (t, qj , ub), pi),

and taking the natural projection

σW : C ×E W → W
we can construct the pullback of the coupling 1-form Ĉ and of the forms �W and �W to WF :

CWF = (σW ◦ iF )∗Ĉ, �WF = (σW ◦ iF )∗�W , �WF = (σW ◦ iF )∗�W = (
ρF

2

)∗
�,

see definition 1, whose local expressions are

CWF = (p + piF i (t, qj , ua)) dt, �WF = pi dqi + p dt, �WF = −dpi ∧ dqi − dp ∧ dt.

Hence, we can draw the following diagram

C ×E W Id × µW

σW

C ×E Wr

σWr

GraphF

WF µWF

iF

ρF2

WF
r

iFr

T∗E

W

ρ2

µW Wr (11)

where ρF
2 , ρ2, µWF and σWr

are natural projections.
Furthermore, we can define the unique function HWF : WF −→ R by the condition

CWF − (
ρF

1

)∗
L = HWF dt,
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where ρF
1 : WF → C is another natural projection. This function HWF is locally described as

HWF (t, qi, ua, p, pi) = p + piF i (t, qj , ua) − L(t, qj , ua); (12)

(compare this expression with (2)). This is the natural Pontryagin Hamiltonian function as
appears in theorem 1.

Let WF
0 be the submanifold of WF defined by the vanishing of HWF ; that is,

WF
0 = {w ∈ WF | HWF (w) = 0}.

In local coordinates, WF
0 is given by the constraint

p + piF i (t, qj , ua) − L(t, qj , ua) = 0.

Observe that, in this way, we recover the condition (8). An obvious set of coordinates in WF
0

is (t, qi, ua, pi). We denote by F
0 : WF

0 → WF the natural embedding; in local coordinates,

F
0 (t, qi, ua, pi) = (t, qi, ua, L(t, qj , ub) − piF i (t, qj , ub), pj ).

In a similar way to proposition 1, we may prove the following proposition.

Proposition 2. WF
0 is a 1-codimensional µWF -transverse submanifold of WF , diffeomorphic

to WF
r .

As a consequence, the submanifold WF
0 induces a section of the projection µWF ,

ĥF : WF
r → WF . (13)

Locally, ĥF is specified by giving the local Hamiltonian function ĤF = pjF j − L; that is,
ĥF (t, qi, ua, pi) = (t, qi, ua, p = −ĤF , pi). The map ĥF is called a Hamiltonian section of
µWF .

Thus, we can draw the following diagram, where all the projections are natural

J1π

π̄1π1

E C

F

π̄CπC

WF
0

ρ0F
1

F0

ρ0F
2

ρ̂0F
2

ρ0F
E

WF

ρF1

ρF2

µ
WF

ρF
ρF

E

WF
r

ρrF1

ρrF2 ◦ ĥF

ρrF2

ρrF

T ∗E

µ

J1π∗
(14)
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Finally we define the forms

�WF
0

= (
F

0

)∗
�WF , �WF

0
= (

F
0

)∗
�WF

with local expressions

�WF
0

= pi dqi + (L − piF i ) dt, �WF
0

= −dpi ∧ dqi − d(L − piF i ) ∧ dt.

3.3. Optimal control equations

Now we are going to establish the dynamical problem for the system
(
WF

0 ,�WF
0

)
and as a

consequence we obtain a geometrical version of the weak form of the maximum principle.

Proposition 3. Let (L,F) define a regular optimal control problem, then there exists a
submanifold WF

1 of WF
0 and a unique vector field Z ∈ X

(
WF

0

)
tangent to WF

1 such that[
i(Z)�WF

0

]∣∣
WF

1
= 0, [i(Z) dt]|WF

1
= 1. (15)

The integral curves � of Z satisfy locally the necessary conditions of theorem 2.

Proof. In a natural coordinate system, we have

Z = f
∂

∂t
+ Ai ∂

∂qi
+ Ba ∂

∂ua
+ Ci

∂

∂pi

where f,Ai, Ba and Ci are unknown functions in WF
0 . Then, the second equation (15) leads

to f = 1, and from the first we obtain that

coefficients in dpi : F i − Ai = 0 (16)

coefficients in dua:
∂L

∂ua
− pj

∂F j

∂ua
= 0 (17)

coefficients in dqi :
∂L

∂qi
− pj

∂F j

∂qi
− Ci = 0 (18)

coefficients in dt : −Ai ∂L

∂qi
+ Aipj

∂F j

∂qi
− Ba ∂L

∂ua
+ Bapj

∂F j

∂ua
+ CiF i = 0. (19)

Now, if �(t) = (t, qi(t), ua(t), pi(t)) is an integral curve of Z, we have that Ai = dqi

dt
,

Ba = dua

dt
, Ci = dpi

dt
.

The Pontryagin Hamiltonian function is H = p + piF i − L. As we are in WF
0 ,

condition (8), H = 0, is satisfied. Furthermore,

• from (16) we deduce that Ai = F i ; that is, dqi

dt
= ∂H

∂pi
, which are equations (5);

• equations (17) determine a new set of conditions

ϕa = ∂L

∂ua
− pj

∂F j

∂ua
= ∂H

∂ua
= 0 (20)

which are equations (9). We assume that they define the new submanifold WF
1 of WF

0 .
We denote by F

1 : WF
1 ↪→ WF

0 the natural embedding.
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• from (18) we completely determine the functions Ci = dpi

dt
= − ∂H

∂qi ; which are
equations (6);

• finally, using (16), (18) and (17) it is easy to prove that equations (19) hold identically.

Furthermore, Z must be tangent to WF
1 , that is,

Z(ϕa) = Z

(
∂H
∂ua

)
= 0

(
on WF

1

)

or, in other words,

0 = ∂2H
∂t∂ua

+ F i ∂2H
∂qi∂ua

+ Bb ∂2H
∂ub∂ua

− ∂H
∂qi

∂2H
∂pi∂ua

(on WF
1 ). (21)

However, as the optimal control problem is regular, the matrix ∂2H
∂ub∂ua has maximal rank. Then

equations (21) determine all the coefficients Bb. �

As a direct consequence of this proposition, we state the intrinsic version of theorem 2.

Theorem 3 (geometric weak Pontryagin’s maximum principle). If γ : I → C is a solution
to the regular optimal control problem given by (L,F), then there exists an integral curve of
a vector field Z ∈ X

(
WF

0

)
, whose projection to C is γ , and such that Z is a solution to the

equations

i(Z)�WF
0

= 0, i(Z) dt = 1,

in a submanifold WF
1 of WF

0 , which is given by the condition (20).

Note that the conditions fulfilled by the integral curves of Z, satisfying the suitable initial
conditions, imply that their natural projections on C are γ .

Remark. In fact, the second equation of (15) could be relaxed to the condition

i(Z) dt = 0,

which determines vector fields transversal to π whose integral curves are equivalent to those
obtained above, with arbitrary reparametrization.

Note that, using the implicit function theorem on the equations ϕa = 0, we get the
functions ua = ua(t, q, p). Therefore, for regular control problems, we can choose local
coordinates (t, qi, pi) on WF

1 , and H|WF
1

is locally a function of these coordinates.
If the control problem is not regular, then one has to implement a constraint algorithm to

obtain a final constraint submanifold WF
f (if it exists) where the vector field Z is tangent (see,

for instance, [8]).
Let 1: WF

1 → WF
0 be the natural embedding, the form �WF

1
= (

F
1

)∗
�WF

0
is locally

written as

�WF
1

= −dpi ∧ dqi − dH|WF
1

∧ dt.

Hence, for optimal control problems, taking into account the regularity of the matrix (10), we
have the following proposition.

Proposition 4. If the optimal control problem is regular, then
(
WF

1 ,�WF
1
, dt

)
is a cosymplectic

manifold, that is,
(
�WF

1

)n ∧ dt is a volume form (see [15]).
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4. Implicit optimal control problems

4.1. A unified geometric framework for implicit optimal control problems

The formalism presented in section 3.2 is valid for a more general class of optimal control
problems not previously considered from a geometric perspective: optimal control problems
whose state equations are implicit, that is,

�α(t, q, q̇, u) = 0, 1 � α � s, with d�1 ∧ · · · ∧ d�s = 0. (22)

There are several examples of these kinds of optimal control problems, some of them coming
from engineering applications. In section 5, we study two specific examples: the descriptor
systems which appear in electrical engineering and the controlled Lagrangian systems which
play a relevant role in robotics.

From a more geometric point of view, we may interpret equations (22) as constraint
functions determining a submanifold MC of C ×E J 1π , with natural embedding MC : MC ↪→
C ×E J 1π . We will also assume that (πC × π1) ◦ MC : MC → E is a surjective submersion.

In this situation, the techniques presented in the previous section are still valid. Now the
implicit optimal control system is determined by the data (L,MC), where L ∈ �1(MC) is a
semibasic form with respect to the projection τMC : MC → R, and hence it can be written as
L = L dt , for some L ∈ C∞(MC). First define the extended control-jet-momentum manifold
and the restricted control-jet-momentum manifold

WMC = MC ×E T ∗E, WMC

r = MC ×E J 1π∗

which are submanifolds of C×EW = C×E J 1π×E T ∗E and C×EWr = C×E J 1π×E J 1π∗,
respectively.

We have the canonical immersions (embeddings)

iMC : WMC ↪→ C ×E W, iMC

r : WMC

r ↪→ C ×E Wr .

So we can draw a diagram analogous to (11) replacing the core of the diagram by

MC

WMC

ρMC
1

µWMC

WMC
r

ρrMC
1

where all the projections are natural.
Now, consider the pullback of the coupling 1-form Ĉ and the forms σ ∗

W�W and σ ∗
W�W to

WMC by the map iMC : WMC → C ×E W; that is

CWMC = (σW ◦ iMC )∗Ĉ, �WMC = (σW ◦ iMC )∗�W , �WMC = (σW ◦ iMC )∗�W ,

and denote by Ĉ ∈ C∞(WMC ) the unique function such that CWMC = Ĉ dt . Finally, let
HWMC : WMC → R be the unique function such that CWMC − (

ρ
MC

1

)∗
L = HWMC dt . Observe

that HWMC = Ĉ − L̂, where L̂ = (
ρ

MC

1

)∗
L, and remember that HWMC is the Pontryagin

Hamiltonian function, see (12).
Let WMC

0 be the submanifold of WMC defined by the vanishing of HWMC , i.e.

WMC

0 = {w ∈ WMC | HWMC (w) = (Ĉ − L̂)(w) = 0}, (23)

and denote by 
MC

0 : WMC

0 ↪→ WMC the natural embedding. As in proposition 1 we may prove
the following proposition.

Proposition 5. WMC

0 is a 1-codimensional µWMC -transverse submanifold of WMC ,
diffeomorphic to WMC

r .
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As a consequence, the submanifold WF
0 induces a section of the projection µWMC ,

ĥMC : WMC

r → WMC .

Then we can draw the following diagram, which is analogous to (14), where all the projections
are natural

C ×E J1π

E MC

MC

π̄MCπMC

WMC
0

ρ0MC
1

MC
0

ρ0MC
2

ρ̂0MC

2

ρ0MC
E

WMC

ρMC
1

ρMC
2

µ
WMC

ρMC

ρMC
E

WMC
r

ρrMC
1

ρrMC
2 ◦ ĥMC

ρrMC

2

ρrMC

T ∗E

µ

J1π∗

Finally, we define the forms

�WMC
0

= (


MC

0

)∗
�WMC , �WMC

0
= (


MC

0

)∗
�WMC .

4.2. Optimal control equations

Now, we will see how the dynamics of the optimal control problem (L,MC) is determined by
the solutions (where they exist) of the equations

i(Z)�WMC
0

= 0, i(Z) dt = 1, for Z ∈ X
(
WMC

0

)
. (24)

As in section 3.3, the second equation of (24) can be relaxed to the condition

i(Z) dt = 0.

In order to work in local coordinates we need the following proposition, whose proof is
obvious.

Proposition 6. For a given w ∈ WMC

0 , the following conditions are equivalent.

(1) There exists a vector Zw ∈ TwWMC

0 verifying that

�WMC
0

(Zw, Yw) = 0, for every Yw ∈ TwWMC

0 .

(2) There exists a vector Zw ∈ Tw(C ×E W) verifying that

(i) Zw ∈ TwWMC

0 ,
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(ii) i(Zw)(σ ∗
W�W)w ∈ (

TwWMC

0

)0
.

As a consequence of this last proposition, we can obtain the implicit optimal control
equations using condition 2 as follows: there exists Z ∈ X(C ×E W) such that

• Z is tangent to WMC

0 ;
• the 1-form i(Z)σ ∗

W�W is null on the vector fields tangent to WMC

0 .

As WMC

0 is defined in (23), and the constraints are �α = 0 and Ĉ − L̂ = 0; then there exist
λα, λ ∈ C∞(C ×E W), to be determined, such that

(i(Z)σ ∗
W�W)|WMC

0
= (λα d�α + λd(Ĉ − L̂))|WMC

0
.

As usual, the undetermined functions λα’s and λ are called Lagrange multipliers.
Now using coordinates (t, qi, ua, vi, p, pi) in C ×E W , we look for a vector field

Z = ∂

∂t
+ Ai ∂

∂qi
+ Ba ∂

∂ua
+ Ci ∂

∂vi
+ Di

∂

∂pi

+ E
∂

∂p
,

where Ai, Ba, Ci,Di, E are unknown functions in WMC

0 verifying the equation

0 = iZ(dqi ∧ dpi + dt ∧ dp) − λα d�α − λd(p + piv
i − L(t, q, u))

=
(

−E − λα

∂�α

∂t
+ λ

∂L

∂t

)
dt +

(
λ

∂L

∂qi
− λα

∂�α

∂qi
− Di

)
dqi

+

(
λ

∂L

∂ua
− λα

∂�α

∂ua

)
dua +

(
−λpi − λα

∂�α

∂vi

)
dvi

+ (Ai − λvi) dpi + (1 − λ) dp.

Thus, we obtain λ = 1, and

Ai = vi, Di = ∂L

∂qi
− λα

∂�α

∂qi
, E = ∂L

∂t
− λα

∂�α

∂t
,

pi = −λα

∂�α

∂vi
, 0 = ∂L

∂ua
− λα

∂�α

∂ua

together with the tangency conditions

0 = Z(�α)|WMC
0

=
(

∂�α

∂t
+ Ai ∂�α

∂qi
+ Ba ∂�α

∂ua
+ Ci ∂�α

∂vi

) ∣∣∣∣
WMC

0

0 = Z(p + piv
i − L(t, q, u))|WMC

0
.

Therefore the equations of motion are

d

dt

(
λα(t)

∂�α

∂vi
(t, q(t), q̇(t), u(t))

)
+

∂L

∂qi
(t, q(t), u(t)) − λα(t)

∂�α

∂qi
(t, q(t), q̇(t), u(t)) = 0

∂L

∂ua
(t, q(t), u(t)) − λα(t)

∂�α

∂ua
(t, q(t), q̇(t), u(t)) = 0

�α(t, q(t), q̇(t), u(t)) = 0.

Let L0 = L − λα�α be the classical extended Lagrangian for constrained systems. Then
these last equations are the usual dynamical equations in optimal control obtained by applying
the Lagrange multipliers method to the constrained variational problem, that is, the Euler–
Lagrange equations for L0, the extremum necessary condition at interior points, and the
constraints.
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Remarks.

• In the particular case that �j = vj − F j = 0, the vector field Z so-obtained is just the
image of the vector field obtained in section 3.3 by the Hamiltonian section (13), as a
simple calculation in coordinates shows.

• Another obvious but significant remark is that we can take π̄ k: J kπ → R (the bundle
of k-jets of π ) instead of π : E → R, and hence J kπ̄k and T ∗J kπ instead of J 1π̄1 and
T ∗E, respectively. These changes allows us to address those optimal control problems
where we have �kC : C → J kπ ; that is, we deal with higher-order equations, and their
solutions must satisfy that (γ (t), j k+1(πk ◦ �kC ◦ γ )(t)) ∈ M , where M is a submanifold
of C ×J kπ J k+1π .

5. Applications and examples

5.1. Optimal control of Lagrangian systems with controls

See appendix A for previous geometric concepts which are needed in this section. For a
complete study of these systems see [2, 4] and references therein.

Now we provide a definition of a controlled-force, which allows dependence on time,
configuration, velocities and control inputs. In a global description, one assumes a fiber
bundle structure �1C : C −→ J 1π , where C is the bundle of controls, with coordinates
(t, q, v, u). Then a controlled-force is a smooth map F: C → Cπ , so that πJ 1π ◦ F = �1C (see
diagram (A.2)).

In a natural chart, a controlled-force is represented by

F(t, q, v, u) = Fi (t, q, v, u)(dqi − vi dt).

A controlled Lagrangian system is defined as the pair (L, F) which determines an implicit
control system described by the subset DC of C ×J 1π J 2π :

DC = {
(c, p̂) ∈ C ×J 1π J 2π

∣∣(ı∗1dT �L − (
π2

1

)∗
dL

)
(p̂) = ((

π2
1

)∗
F
)
(c)

}
= {

(c, p̂) ∈ C ×J 1π J 2π
∣∣EL(p̂) = ((

π2
1

)∗
F
)
(c)

}
= {

(c, p̂) ∈ C ×J 1π J 2π
∣∣(EL ◦ pr2 − (

π2
1

)∗
F ◦ pr1

)
(c, p̂) = 0

}
where pr1 and pr2 are the natural projections from C ×J 1π J 2π onto the factors. In fact, DC

is not necessarily a submanifold of C ×J 1π J 2π . There are a lot of cases where this does
happen. In local coordinates

DC =
{
(t, q, v,w, u) ∈ C ×J 1π J 2π

∣∣∣∣ ∂2L

∂vi∂vj
(t, q, v)wj +

∂2L

∂vi∂qj
(t, q, v)vj

+
∂2L

∂vi∂t
(t, q, v) − ∂L

∂qi
(t, q, v) − Fi (t, q, v, u) = 0

}
.

A solution to the controlled Lagrangian system (L, F) is a map γ : R → C satisfying that

(i) �1C ◦ γ = j 1(π1 ◦ �1C ◦ γ );
(ii) (γ (t), j 2(π1 ◦ �1C ◦ γ )(t)) ∈ DC , for every t ∈ R.

The condition (i) means that �1C ◦ γ is holonomic, and (ii) is the condition (A.3) of appendix
A.3; that is, the Euler–Lagrange equations for the controlled Lagrangian system (L, F).

Now, consider the map (Id, ϒ): C ×J 1π J 2π → C ×J 1π J 1π̄1, where ϒ : J 2π → J 1π̄1

is defined in (A.1) (see appendix A.2), and let MC = (Id, ϒ)(DC). As (Id, ϒ) is an injective
map, we can identify DC ⊂ C ×J 1π J 2π with this subset MC of C ×J 1π J 1π̄1. Observe that
there is a natural projection from MC to J 1π .
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If L: MC → R is a cost function, we may consider the implicit optimal control system
determined by the pair (L,MC), where L = L dt , and apply the method developed in
section 4.

Let WMC = MC ×J 1π T ∗J 1π , and WC = C ×J 1π J 1π̄1 ×J 1π T ∗J 1π . The natural
projection from WC

to T ∗J 1π allows us to pull back the canonical 2-form �J 1π to a

presymplectic form �WC ∈ �2(WC
). Furthermore, in J 1π̄1 ×J 1π T ∗J 1π there is the natural

coupling form ¯̂C (see definition 1). We denote by C̄ its pull-back to WC
. We denote by L and

L the pull-back of L and L from MC to WC
, for the sake of simplicity.

Then, let H̄WC : WC → R be the unique function such that C̄ − L = H̄WC dt ,
whose local expression is H̄WC = p + piv̄

i + p̄iw
i − L, and consider the submanifold

W0 = {q̃ ∈ WC |H̄WC (q̃) = 0}. The pull-back of H̄WC to WMC is the Pontryagin Hamiltonian,
denoted by H̄WMC .

Finally, the dynamics is in the submanifold WMC

0 = WMC ∩ W0 of WC
, where 

MC

1 is

the natural embedding. WMC

0 is endowed with the presymplectic form �WMC
0

= (


MC

1

)∗
�WC .

Therefore, the motion is determined by a vector field Z ∈ X
(
WMC

0

)
satisfying the equations

i(Z)�WMC
0

= 0, i(Z) dt = 1.

A local chart in WC
is (t, qi, vi, v̄i , wi, uα, p, pi, p̄i), where (v̄i , wi) and (p, pi, p̄i) are

the natural fiber coordinates in J 1π̄1 and T ∗J 1π , respectively. The manifold WMC is given
locally by the 2n constraints:

ϕi(t, q
i, vi, v̄i , wi, ua, p, pi, p̄i) = wj ∂2L

∂vi∂vj
(t, q, v) + v̄j ∂2L

∂vi∂qj
(t, q, v) +

∂2L

∂vi∂t
(t, q, v)

− ∂L

∂qi
(t, q, v) − Fi (t, q, v, u) = 0

ϕ̄i(t, qi, vi, v̄i , wi, ua, p, pi, p̄i) = vi − v̄i = 0,

and W0 is given by

φ(t, qi, vi, v̄i , wi, ua, p, pi, p̄i) = H̄WC (t, qi, vi, v̄i , wi, ua, p, pi, p̄i)

= p + piv̄
i + p̄iw

i − L(t, q, v, u) = 0,

and

�WMC
0

= dqi ∧ dpi + dvi ∧ dp̄i + dt ∧ d(L − piv̄
i − p̄iw

i).

Following proposition 6, we look for a vector field Z ∈ X(WC
) such that, for every

w ∈ WMC

0 :

(i) Zw ∈ TwW
MC

0 , (ii) i(Zw)�WC ∈ (
TwW

MC

0

)0
,

or, equivalently

(i)
(


MC

1

)∗
(Z(ϕi)) = 0,

(


MC

1

)∗
(Z(ϕ̄i)) = 0,

(


MC

1

)∗
(Z(φ)) = 0,

(ii)
(


MC

1

)∗
(i(Z)�WC ) = 0.

Remember that the constraints are ϕi = 0, ϕ̄i = 0, φ = 0.
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If Z is given locally by

Z = ∂

∂t
+ Ai ∂

∂qi
+ Ai ∂

∂vi
+ Āi ∂

∂v̄i
+ Āi ∂

∂wi
+ Ba ∂

∂ua
+ D

∂

∂p
+ Ci

∂

∂pi

+ C̄i

∂

∂p̄i

,

then Ai,Ai , Āi , Āi , Ba,D,Ci, C̄i are unknown functions in WC
, such that

i(Z)�WC = λi dϕi + λ̄i dϕ̄i + λ d(p + piv̄
i + p̄iw

i − L(t, q, v, u))

and Z(ϕi) = 0, Z(ϕ̄i) = 0 and Z(p + piv̄
i + p̄iw

i − L(t, q, v, u)) = 0. From these equations
we obtain

λ = 1, Ai = v̄i , Ai = wi

Ci = ∂L

∂qi
− λj ∂ϕj

∂qi
, C̄i = ∂L

∂vi
− λj ∂ϕj

∂vi
− λ̄i , D = ∂L

∂t
− λj ∂ϕj

∂t

0 = ∂L

∂ua
+ λi ∂Fi

∂ua
, pi = λ̄i − λj ∂2L

∂vj∂qi
, p̄i = −λj ∂2L

∂vi∂vj

(25)

and the tangency conditions

Z(ϕi) = ∂ϕi

∂t
+ v̄j ∂ϕi

∂qj
+ wj ∂ϕi

∂vj
+ Āj ∂2L

∂vi∂qj
− Ba ∂Fi

∂ua
+ Āj ∂2L

∂vi∂vj
= 0

Z(ϕ̄i) = wi − Āi = 0

Z(φ) = Z(p + piv̄
i + p̄iw

i − L(t, q, v, u)) = 0

(26)

where the third condition is satisfied identically using the previous equations.
Assuming that the Lagrangian L is regular, that is, det(Wij ) = det

(
∂2L

∂vi∂vj

) = 0, then from
equations for pi and p̄i in (25) we obtain explicit values of the Lagrange multipliers λi and
λ̄i . Therefore, the remaining equations (25) are now rewritten as the new set of constraints

ψa(t, q, v, u, p̄) = ∂L

∂ua
− Wij p̄i

∂Fj

∂ua
= 0, (27)

which corresponds to
∂H̄

WMC

∂ua = 0.
The new compatibility condition is

Z(ψa) = ∂ψa

∂t
+ v̄j ∂ψa

∂qj
+ wj ∂ψa

∂vj
+ Bb ∂ψa

∂ub
+ C̄i

∂ψa

∂p̄i

= 0. (28)

Furthermore we assume that

det

(
∂ψa

∂ub

)
= 0,

then, from equations (26) and (28) we obtain the remaining components Āi and Ba , and we
determine completely the vector field Z.

The equations of motion for a curve are determined by the system of implicit-differential
equations:

ṗi(t) = ∂L

∂qi
(t, q(t), q̇(t), u(t)) − λj (t, q(t), q̇(t), p̄(t))

∂ϕj

∂qi
(t, q(t), q̇(t), q̈(t), u(t))

˙̄pi(t) = ∂L

∂vi
(t, q(t), q̇(t), u(t)) − pi(t) − λj (t, q(t), q̇(t), p̄(t))

×
[
∂ϕj

∂vi
(t, q(t), q̇(t), q̈(t), u(t)) +

∂2L

∂vj∂qi
(t, q(t), q̇(t))

]
(29)
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0 = d

dt

(
∂L

∂vi
(t, q(t), q̇(t))

)
− ∂L

∂qi
(t, q(t), q̇(t)) − Fi (t, q(t), q̇(t), u(t)) (30)

0 = ∂L

∂ua
(t, q(t), q̇(t), u(t)) − Wij (t, q(t), q̇(t))p̄i(t)

∂Fj

∂ua
(t, q(t), q̇(t), u(t)). (31)

Equation (31) is the explicit expression of (27).
In [1] the authors study optimal control of Lagrangian systems with controls in a more

restrictive situation using higher-order dynamics, obtaining that the states are determined by
a set of fourth-order differential equations. First it is necessary to assume that the system is
fully actuated, that is m = n, and rank(�ij ) = rank

(
∂Fi

∂uj

) = n. Moreover, in the following we
assume that the system is affine on controls, that is,

Fi (t, q, q̇, u) = Ai(t, q, q̇) + Aij (t, q, q̇)uj .

Therefore, �ij = Aij .
Then from the constraint equations (30) and (31), applying the implicit function theorem,

we deduce that

ui(t) = ui(t, q(t), q̇(t), q̈(t)) = Aij

[
d

dt

(
∂L

∂vj
(t, q(t), q̇(t))

)

− ∂L

∂qj
(t, q(t), q̇(t)) − Aj(t, q(t), q̇(t))

]

p̄i(t) = Hj

i (t, q(t), q̇(t))
∂L

∂uj
(t, q(t), q̇(t), u(t, q(t), q̇(t), q̈(t)))

where
(
Hj

i

)
are the components of the inverse matrix of the regular matrix (WikAkj ).

Taking the derivative with respect to time of equation (29), and substituting the value
of ṗi(t) using equation (29) we obtain a fourth-order differential equation depending on the
states. After some computations we deduce that

Hj

i (t, q(t), q̇(t))
∂2

L

∂uj∂uk
(t, q(t), q̇(t), q̈(t))

d4qk

dt4
(t) = Gi(t, q(t), q̇(t), q̈(t), ¨q̇(t)).

Finally, under the assumption that the matrix
(

∂2
L

∂uj ∂uk

)
is invertible, we obtain a explicit fourth-

order system of differential equations:

d4qi

dt4
(t) = Ḡi(t, q(t), q̇(t), q̈(t), ¨q̇(t)).

5.2. Optimal control problems for descriptor systems

See [17] for the origin and interest of this example. The study of these kinds of systems was
suggested to us by Professor A D Lewis (Queen’s University of Canada).

Consider the problem of minimizing the functional

J = 1

2

∫ +∞

0
[ai(q

i)2 + ru2] dt,

1 � i � 3, with control equations

q̇2 = q1 + b1u, q̇3 = q2 + b2u, 0 = q3 + b3u

with parameters ai, bi � 0 and r > 0.
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As in the previous section, the geometric framework developed in section 3.2 is also valid
for this class of systems. Let E = R × R

3 with coordinates (t, qi), and C = R × R
3 × R with

coordinates (t, qi, u). The submanifold MC ⊂ C ×E J 1π is given by

MC = {(t, q1, q2, q3, v1, v2, v3, u)|v2 = q1 + b1u, v3 = q2 + b2u, 0 = q3 + b3u}.
The cost function is

L: C −→ R

(t, q1, q2, q3, u) 
−→ 1
2 [a1(q

1)2 + a2(q
2)2 + a3(q

3)2 + ru2].

We analyze the dynamics of the implicit optimal control system determined by the pair
(L,MC).

Let WMC = MC ×E T ∗E and WC = C ×E J 1π ×E T ∗E with coupling form C inherited
from the natural coupling form in J 1π × T ∗E. Let HWC : WC → R be the unique function
such that C − L = HWC dt , and consider the submanifold W0 = {q̃ ∈ WC |HWC (q̃) = 0}.
Finally, the dynamics is in the submanifold WMC

0 = WMC ∩ W0 of WC . Locally,

WMC

0 = {(t, q1, q2, q3, v1, v2, v3, u, p, p1, p2, p3)|v2 = q1 + b1u, v3 = q2 + b2u,

q3 + b3u = 0, p + p1v
1 + p2v

2 + p3v
3 − L = 0}.

Therefore, the motion is determined by a vector field Z ∈ X
(
WMC

0

)
satisfying

equations (24), which according to proposition 6 is equivalent to finding a vector field
Z ∈ X(WC) (if it exists):

Z = ∂

∂t
+ A1 ∂

∂q1
+ A2 ∂

∂q2
+ A3 ∂

∂q3
+ C1 ∂

∂v1
+ C2 ∂

∂v2

+ C3 ∂

∂v3
+ B

∂

∂u
+ D1

∂

∂p1
+ D2

∂

∂p2
+ D3

∂

∂p3
+ E

∂

∂p

such that

i(Z)�WC = λ1d(q1 + b1u − v2) + λ2d(q2 + b2u − v3) + λ3d(q3 + b3u) + λdHWC ,

Z(q1 + b1u − v2) = 0, Z(q2 + b2u − v3) = 0, Z(q3 + b3u) = 0, Z(HWC ) = 0

where �WC ∈ �2(WC) is the 2-form with local expression

�WC = dq1 ∧ dp1 + dq2 ∧ dp2 + dq3 ∧ dp3 + dt ∧ dp.

After some straightforward computations, we obtain that

A1 = v1, A2 = q1 + b1u, A3 = q2 + b2u

λ = 1, E = 0, 0 = ru − b1p2 − b2p3 − b3λ3

C2 = v1 + b1B, C3 = A2 + b2B, 0 = A3 + b3B

p1 = 0, p2 = λ1, p3 = λ2

D1 = a1q1 − p2, D2 = a2q2 − p3, D3 = a3q3 − λ3.

We deduce that

λ3 = 1

b3
(ru − b1p2 − b2p3), B = − 1

b3
(q2 + b2u).

Therefore, the new constraint submanifold WMC

1 ↪→ WMC

0 is

WMC

1 = {(t, q1, q2, v1, u, p1, p2, p3) | p1 = 0}.
Consistency of the dynamics implies that

0 = Z(p1) = D1 = a1q1 − p2.
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Thus,

WMC

2 = {(t, q1, q2, v1, u, p2, p3) | a1q1 − p2 = 0}
and once again we impose the tangency to the new constraints:

0 = Z(a1q1 − p2) = a1v
1 − a2q2 + p3

which implies that

WMC

3 = {(t, q1, q2, v1, u, p3) | a1v
1 − a2q

2 + p3 = 0}.
From the compatibility condition

0 = Z(a1v
1 − a2q

2 + p3)

and the constraints we determine the remaining component C1 of Z:

C1 = 1

a1b3

[
(a2b3 − a1b1)q

1 − b2a2q
2 +

(
a2b1b3 + a3b

2
3 + r

)
u + b2a1v

1
]
.

Therefore the equations of motion of the optimal control problem are

q̈1(t) = 1

a1b3

[
(a2b3 − a1b1)q

1(t) − a2b2q
2(t) +

(
a2b1b3 + a3b

2
3 + r

)
u(t) + a1b2q̇

1(t)
]

q̇2(t) = q1(t) + b1u(t)

0 = q2(t) + b2u(t) − b3u̇(t).

(32)

From (32) we deduce that

u(t) = 1

a2b1b3 + a3b
2
3 + r

[(a1b1 − a2b3)q
1(t) + a2b2q

2(t) − a1b2q̇
1(t) + a1b3q̈

1(t)].

This is the result obtained in Müller [17], where the optimal feedback control depends on the
state variables and also on their derivatives (non-casuality).

Choosing local coordinates (t, q1, q2, v1, u) on WMC

3 , if 3: WMC

3 
→ WC is the canonical
embedding, then �WMC

3
=  ∗

3 �WC is locally written as

�WMC
3

= −a1 dq1 ∧ dq2 + a2b3 dq2 ∧ du − a1b3 dv1 ∧ du + dt ∧ d ∗
3 p,

where  ∗
3 p: WMC

3 → R is the function

 ∗
3 p = − 1

2a1(q
1)2 − 1

2a2(q
2)2 + 1

2

(
r + a3b

2
3

)
u2 − a1b1q

1u − a2b2q
2u + a1b2v

1u + a1q
2v1.

Obviously,
(
�WMC

3
, dt

)
is a cosymplectic structure on WMC

3 (see proposition 4), and there

exists a unique vector field Z̄ ∈ X
(
WMC

3

)
satisfying

i(Z̄)�WMC
3

= 0, i(Z̄) dt = 1.

6. Conclusions and outlook

In this paper, we have elucidated the geometrical structure of optimal control problems using a
variation of the Skinner–Rusk formalism for mechanical systems. The geometric framework
allows us to find the dynamical equations of the problem (equivalent to the Pontryagin
maximum principle for smooth enough problems without boundaries on the space of controls),
and to describe the submanifold (if it exists) where the solutions of the problem are consistently
defined. The method admits a nice extension for studying the dynamics of implicit optimal
control problems with a wide range of applicability.
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One line of future research appears when we combine our geometric method for optimal
control problems, and the study of the (approximate) solutions to optimal control problems
involving partial differential equations when we discretize the space domain and consider the
resultant set of ordinary differential equations (see, for instance, [5] and references therein
and [14], for a geometrical description). This resultant system is an optimal control problem,
where the state equations are, presumably, a very large set of coupled ordinary differential
equations. Typically, difficulties other than computational ones appear because the system is
differential-algebraic, and therefore the optimal control problem is a usual one for a descriptor
system.

Moreover, in this paper we have confined ourselves to the geometrical aspects of time-
dependent optimal control problems. Of course, the techniques are suitable for studying the
formalism for optimal control problems for partial differential equations in general.
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Appendix A

A.1. Tulczyjew’s operators

Given a differentiable manifold Q and its tangent bundle τQ: T Q → Q, we consider the
following operators, introduced by Tulczyjew [25]: first we have iT : �k(Q) −→ �k−1(T Q),
which is defined as follows: for every (p, v) ∈ T Q, α ∈ �k(Q), and X1, . . . , Xk−1 ∈ X(T Q),

(iT α)((p, v);X1, . . . , Xk−1) = α(p; v, T(p,v)τQ((X1)(p,v)), . . . , T(p,v)τQ((Xk−1)(p,v))).

Then, the so-called total derivative is a map dT : �k(Q) → �k(T Q) defined by

dT = d ◦ iT + iT ◦ d.

For the case k = 1, using natural coordinates in T Q, the local expression is

dT α ≡ dT (Aj dqj ) = Aj dvj + vi ∂Aj

∂qi
dqj .

A.2. Some geometrical structures

Recall that, associated with every jet bundle J 1π , we have the contact system, which is a
subbundle Cπ of T ∗J 1π whose fibers at every j 1φ(t) ∈ J 1π are defined as

Cπ (j 1φ(t)) = {
α ∈ T ∗

j 1φ(t)(J
1π) | α = (Tj 1φ(t)π

1 − Tj 1φ(t)(φ ◦ π̄1))∗β, β ∈ V∗
φ(t)π

}
.

One may readily see that a local basis for the sections of this bundle is given by {dqi − vi dt}.
Now, denote by J 2π the bundle of 2-jets of π . This jet bundle is equipped with natural

coordinates (t, qi, vi, wi) and canonical projections

π2
1 : J 2π → J 1π, π2: J 2π → E, π̄2: J 2π → R.

Considering the bundle J 1π̄1, we introduce the canonical injection ϒ : J 2π → J 1π̄1 given by

ϒ(j 2φ(t)) = (j 1(j 1φ))(t). (A.1)



Skinner–Rusk unified formalism for optimal control systems and applications 12091

Taking coordinates (t, qi, vi; v̄i , wi) in J 1π̄1 then ϒ(t, qi, vi, wi) = (t, qi, vi; vi, wi).
Thus, we have the following diagram

TJ1π = T × T(TQ)

τJ1π

T ∗(J2π)

πJ2π

J1π̄1 = × T(TQ)

(π̄1)1
J2π = × T 2Q

π2
1

ı1 Υ

J1π = × TQ

π1 π̄1

Cπ T ∗J1π

πJ1π

×Q
π

(A.2)

where the inclusion ı1 is locally given by ı1(t, q, v,w) = (t, 1, q, v, v,w).
Observe that

(
π2

1

)∗
T ∗J 1π can be identified with a subbundle of T ∗J 2π by means of the

natural injection ı̂:
(
π2

1

)∗
T ∗J 1π → T ∗J 2π , defined as follows: for every p̂ ∈ J 2π, α ∈

T ∗
π2

1 (p̂)
J 1π , and a ∈ Tp̂J 2π,

(ı̂(p̂, α))(a) = α
(
Tp̂π2

1 (a)
)
.

In the same way, we can identify
(
π2

1

)∗Cπ as a subbundle of
(
π2

1

)∗
T ∗J 1π by means of ı̂.

Local bases for the set of sections of the bundles T ∗J 2π → J 2π,
(
π2

1

)∗
T ∗J 1π → J 2π ,

and
(
π2

1

)∗Cπ → J 2π are (dt, dqi, dvi, dwi), (dt, dqi, dvi) and (dqi − vi dt), respectively.
Incidentally, Sec

(
J 2π,

(
π2

1

)∗
T ∗J 1π

) = C∞(J 2π) ⊗C∞(J 1π)

(
π2

1

)∗
�1(J 1π), which are

the π2
1 -semibasic 1-forms in J 2π .

A.3. Euler–Lagrange equations

Let L ∈ �1(J 1π) be a Lagrangian density and its associated Lagrangian function L ∈
C∞(J 1π). Observe that

dT �L ∈ �1(T J 1π), ı∗1dT �L ∈ �1(J 2π),
(
π2

1

)∗
dL ∈ �1(J 2π).

Then, a simple calculation in coordinates shows that ı∗1dT �L − (
π2

1

)∗
dL is a section of the

bundle projection ı̂
((

π2
1

)∗Cπ

) → J 2π .
The Euler–Lagrange equations for this Lagrangian are a system of second-order

differential equations on Q; that is, in implicit form, a submanifold D of J 2π determined
by

D = {
p̂ ∈ J 2π

∣∣ (ı∗1dT �L − (
π2

1

)∗
dL

)
(p̂) = 0

} = {p̂ ∈ J 2π | EL(p̂) = 0} = E−1
L (0),

where EL = ı∗1dT �L−(
π2

1

)∗
dL. Then, a section φ: R → R×Q is a solution to the Lagrangian

system if, and only if, Im j 2φ ⊂ E−1
L (0). In fact, working in local coordinates, such as

dT �L = ∂L

∂vk
dvk −

(
∂L

∂vj
vj − L

)
dṫ +

(
ṫ

∂2L

∂t∂vk
+ vi ∂2L

∂qi∂vk
+ wi ∂2L

∂vi∂vk

)
dqk

−
[
ṫ

(
vj ṫ

∂2L

∂t∂vj
− ∂L

∂t

)
+ vi

(
vj ∂2L

∂qi∂vj
− ∂L

∂qi

)
+ wi

(
∂L

∂vi
+ vj ∂2L

∂vi∂vj
− ∂L

∂vi

)]
dt
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ı∗1dT �L = ∂L

∂vk
dvk +

(
∂2L

∂t∂vk
+ vi ∂2L

∂qi∂vk
+ wi ∂2L

∂vi∂vk

)
dqk

−
[
vj ∂2L

∂t∂vj
− ∂L

∂t
+ vi

(
vj ∂2L

∂qi∂vj
− ∂L

∂qi

)
+ wivj ∂2L

∂vi∂vj

]
dt

(
π2

1

)∗
dL = ∂L

∂t
dt +

∂L

∂qk
dqk +

∂L

∂vk
dvk,

we obtain

ı∗1dT �L − (
π2

1

)∗
dL =

(
∂2L

∂vi∂vk
wi +

∂2L

∂qi∂vk
vi +

∂2L

∂t∂vk
− ∂L

∂qk

)
(dqk − vk dt)

=
[

d

dt

(
∂L

∂vk

)
− ∂L

∂qk

]
(dqk − vk dt).

Now, suppose that there are external forces operating on the Lagrangian system (J 1π,L).
A force depending on velocities is a section F : J 1π → Cπ . As above, the corresponding
Euler–Lagrange equations are a system of second-order differential equations on Q, given in
implicit form by the submanifold DF of J 2π determined by

DF = {
p̂ ∈ J 2π

∣∣ (ı∗1dT �L − (
π2

1

)∗
dL

)
(p̂) = (

F ◦ π2
1

)
(p̂)

}
= {

p̂ ∈ J 2π
∣∣ EL(p̂) = (

F ◦ π2
1

)
(p̂)

}
.

A section φ: R → R × Q is a solution to the Lagrangian system if, and only if,

EL(j 2φ) = (
π2

1

)∗[(
F ◦ π2

1

)
(j 2φ)

] = (
π2

1

)∗
F(j 1φ). (A.3)

In natural coordinates we have[
d

dt

(
∂L

∂vk

)
− ∂L

∂qk

]
(dqk − vk dt) = Fj (dqj − vj dt).
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